

CollegeBoard Advanced Placement Program

AP® Chemistry

Practice Exam

The questions contained in this AP® Chemistry Practice Exam are written to the content specifications of AP Exams for this subject. Taking this practice exam should provide students with an idea of their general areas of strengths and weaknesses in preparing for the actual AP Exam. Because this AP Chemistry Practice Exam has never been administered as an operational AP Exam, statistical data are not available for calculating potential raw scores or conversions into AP grades.

This AP Chemistry Practice Exam is provided by the College Board for AP Exam preparation. Teachers are permitted to download the materials and make copies to use with their students in a classroom setting only. To maintain the security of this exam, teachers should collect all materials after their administration and keep them in a secure location. Teachers may not redistribute the files electronically for any reason.

© 2008 The College Board. All rights reserved. College Board, Advanced Placement Program, AP, AP Central, SAT, and the acorn logo are registered trademarks of the College Board. PSAT/NMSQT is a registered trademark of the College Board and National Merit Scholarship Corporation. All other products and services may be trademarks of their respective owners. Visit the College Board on the Web: www.collegeboard.com.

Contents

Directions for Administration	ii
Section I: Multiple-Choice Questions	1
Section II: Free-Response Questions	21
Student Answer Sheet for Multiple-Choice Section	32
Multiple-Choice Answer Key	33
Free-Response Scoring Guidelines	34

The College Board: Connecting Students to College Success

The College Board is a not-for-profit membership association whose mission is to connect students to college success and opportunity. Founded in 1900, the association is composed of more than 5,000 schools, colleges, universities, and other educational organizations. Each year, the College Board serves seven million students and their parents, 23,000 high schools, and 3,500 colleges through major programs and services in college admissions, guidance, assessment, financial aid, enrollment, and teaching and learning. Among its best-known programs are the SAT®, the PSAT/NMSOT®, and the Advanced Placement Program® (AP®). The College Board is committed to the principles of excellence and equity, and that commitment is embodied in all of its programs, services, activities, and concerns.

Visit the College Board on the Web: www.collegeboard.com. AP Central is the official online home for the AP Program: apcentral.collegeboard.com.

AP® Chemistry Directions for Administration

The AP Chemistry Exam is 3 hours and 5 minutes in length and consists of a multiple-choice section and a free-response section.

- The 90-minute multiple-choice section contains 75 questions and accounts for 50 percent of the final grade.
- The 95-minute free-response section contains 6 questions and accounts for 50 percent of the final grade. Part A is timed and is 55 minutes long; Part B is 40 minutes long.

A 10-minute break should be provided after Section I is completed. Students should be given a 10-minute warning prior to the end of each of the Parts A and B in Section II of the exam.

The actual AP Exam is administered in one session. Students will have the most realistic experience if a complete morning or afternoon is available to administer this practice exam. If a schedule does not permit one time period for the entire practice exam administration, it would be acceptable to administer Section I one day and Section II on a subsequent day.

Many students wonder whether or not to guess the answers to the multiple-choice questions about which they are not certain. It is improbable that mere guessing will improve a score. However, if a student has some knowledge of the question and is able to eliminate one or more answer choices as wrong, it may be to the student's advantage to answer such a question.

- The use of a calculator* is permitted ONLY during Section II, Part A of the exam. After time is called for Part A, students must place their calculators under their chairs. The use of any other electronic devices (including a cell phone) is not permitted during any portion of the exam.
- It is suggested that Section I of the practice exam be completed using a pencil to simulate an actual administration. Students can use either a pencil or a pen for Section II.
- Teachers will need to provide paper for the students to write their free-response answers. Teachers should provide directions to the students indicating how they wish the responses to be labeled so the teacher will be able to associate the student's response with the question the student intended to answer.
- A periodic table of the elements is provided with both Section I and Section II of the exam. For Section II, a table of standard reduction potentials and tables of commonly used equations and constants are also provided.
- Remember that students are not allowed to remove any materials, including scratch work, from the testing site.

*Calculators cannot have QWERTY keyboards or be designed to communicate with other calculators (such as via infrared ports).

Section I Multiple-Choice Questions

MATERIAL IN THE FOLLOWING TABLE MAY BE USEFUL IN ANSWERING THE QUESTIONS IN THIS SECTION OF THE EXAMINATION.

						00									6								
	2	He	4.00	10	Ne	20.18	18	Ar	39.95	36	Kr	83.80	54	Xe	131.29	98	Rn	(222)					
				6	H	19.00	17	C	35.45	35	Br	79.90	53	Ι	126.91	85	At	(210)				71	Lu
				8	0	16.00	16	S	32.06	34	Se	78.96	52	Te	127.60	84	Po	(209)				70	Yb
r	•			7	Z	14.01	15	Ь	30.97	33	As	74.92	51	Sb	121.75	83	Bi	208.98				69	Tm
PALLA	N			9	၁	12.01	14	Si	28.09	32	Ge	72.59	50	Sn	118.71	82	Pb	207.2				89	Er
The state of the s	PEKIODIC IABLE OF THE ELEMENTS			5	B	10.81	13	Al	26.98	31	Ga	69.72	49	In	114.82	81	I	204.38				29	Ho
	EL									30	Zn	62.39	48	Cd	112.41	80	Hg	200.59				99	Dy
	IHE									29	Cu	63.55	47	Ag	107.87	62	Au	196.97	1111	Rg	(272)	65	Tb
	CF									28	Z	58.69	46	Pd	106.42	78	Pt	195.08	110	Ds	(271)	64	P5
	SLE									27	Co	58.93	45	Rh	102.91	77	Ir	192.2	109	Mt	(268)	63	Eu
T V L	IAE									26	Fe	55.85	44	Ru	101.1	9/	Os	190.2	108	Hs	(277)	62	Sm
CIC	DIC									25	Mm	54.94	43	Tc	(86)	75	Re	186.21	107	Bh	(264)	61	Pm
O. C.	X									24	Cr	52.00	42	Mo	95.94	74	W	183.85	106	Sg	(590)	09	PN
	万五									23	>	50.94	41	S	92.91	73	Ta	180.95	105	Db	(262)	59	Pr
										22	L	47.90	40	Zr	91.22	72	Ht	178.49	104	Rf	(261)	58	Ce
										21	Sc	44.96		Y	88.91	57	*La	138.91	68	†Ac	227.03		sries
		7% Ta		4	Be	9.01	12	Mg	24.30	20	Ca	40.08	38	Sr	87.62	56	Ba	137.33	88	Ra	226.02		*Lanthanide Series
	1	H	1.008	3	Li	6.94	11	Na	22.99	19	K	39.10	37	Rb	85.47	55	Cs	132.91	87	Fr	(223)		*Lanth
																			-				

168.93

167.26

164.93

97 **Bk**

96 Cm

151.97

144.24

140.91

140.12

101 **Md**

100 Fm

99 Es

98 Cf

95 **Am**

93. Np

91 **Pa**

96 Th

†Actinide Series

231.04

232.04

CHEMISTRY

Section I

Time—1 hour and 30 minutes NO CALCULATOR MAY BE USED WITH SECTION I.

Note: For all questions, assume that the temperature is 298 K, the pressure is 1.00 atmosphere, and solutions are aqueous unless otherwise specified.

Throughout the test the following symbols have the definitions specified unless otherwise noted.

T = temperatureL, mL = liter(s), milliliter(s)P = pressure= gram(s)V = volume= nanometer(s) nm S = entropy= atmosphere(s) atm H = enthalpymm Hg = millimeters of mercury G = Gibbs free energy = joule(s), kilojoule(s) R = molar gas constantV = volt(s)n = number of molesmol = mole(s)M = molarm = molal

Part A

Directions: Each set of lettered choices below refers to the numbered statements immediately following it. Select the one that is best in each case and then place the letter of your choice in the corresponding box on the student answer sheet. A choice may be used once, more than once, or not at all in each set.

Questions 1-4 refer to the following chemical compounds.

- (A) CH₄
- (B) CCl₃F
- (C) H₂S
- (D) H₂O₂
- (E) K₂CrO₄
- Commonly used as a disinfectant for minor skin wounds
- 2. A refrigerant implicated in the thinning of the stratospheric ozone layer
- 3. A major component of the fuel known as natural gas
- 4. A yellow solid at room temperature and 1 atm

Questions 5-7 refer to the following molecules.

- (A) CO
- (B) CH₄
- (C) HF
- (D) PH₃
- (E) F_2
- 5. Contains two π -bonds
- 6. Has the highest dipole moment
- 7. Has a molecular geometry that is trigonal pyramidal

Questions 8-11 refer to neutral atoms for which the atomic orbitals are represented below

$$(A) \boxed{1}_{S}$$

(B)
$$1 s 2 s 2 p$$

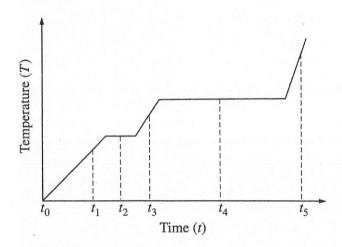
$$\begin{array}{c|cccc} \text{(D)} & \hline 1 & \hline 1$$

- 8. Is in an excited state
- 9. Has exactly five valence electrons
- 10. Has the highest first ionization energy
- 11. Forms an aqueous cation that is colored

Questions 12-15 refer to the chemical reactions represented below.

(A)
$$HC_2H_3O_2(aq) + NH_3(aq) \rightarrow C_2H_3O_2^-(aq) + NH_4^+(aq)$$

(B)
$$Ba^{2+}(aq) + SO_4^{2-}(aq) \rightarrow BaSO_4(s)$$


(C)
$$\operatorname{Zn}(\operatorname{OH})_2(s) + 2 \operatorname{OH}^-(aq) \rightarrow [\operatorname{Zn}(\operatorname{OH})_4]^{2-}(aq)$$

(D)
$$2 \text{ K}(s) + \text{Br}_2(l) \rightarrow 2 \text{ KBr}(s)$$

(E)
$$N_2O_4(g) \rightarrow 2 NO_2(g)$$

- 12. An oxidation-reduction reaction
- 13. A precipitation reaction
- 14. A reaction in which a coordination complex is formed
- 15. A Lewis acid-base reaction that is not a Brønsted-Lowry acid-base reaction

Questions 16-17 refer to various points in time during an experiment conducted at 1.0 atm. Heat is added at a constant rate to a sample of a pure substance that is solid at time t_0 . The graph below shows the temperature of the sample as a function

(A) t_1

of time.

- (B) t_2
- (C) t_3
- (D) t_4
- (E) t_5
- 16. Time when the average distance between the particles is greatest
- 17. Time when the temperature of the substance is between its melting point and its boiling point

Directions: Each of the questions or incomplete statements below is followed by five suggested answers or completions. Select the one that is best in each case and place the letter of your choice in the corresponding box on the student answer sheet.

- 18. Which of the following is the correct name for the compound with formula Ca₃P₂?
 - (A) Tricalcium diphosphorus
 - (B) Calcium phosphite
 - (C) Calcium phosphate
 - (D) Calcium diphosphate
 - (E) Calcium phosphide
- 19. What mass of KBr (molar mass 119 g mol⁻¹) is required to make 250. mL of a 0.400 *M* KBr solution?
 - (A) 0.595 g
 - (B) 1.19 g
 - (C) 2.50 g
 - (D) 11.9 g
 - (E) 47.6 g
- 20. The value of the acid-dissociation constant, K_a , for a weak monoprotic acid HA is 2.5×10^{-6} . The pH of 0.40 M HA is closest to
 - (A) 2.0
 - (B) 3.0
 - (C) 4.0
 - (D) 6.0
 - (E) 8.0

- 21. Which of the systems in equilibrium represented below will exhibit a shift to the left (toward reactants) when the pressure on the system is increased by reducing the volume of the system? (Assume that temperature is constant.)
 - (A) $2 \operatorname{Mg}(s) + \operatorname{O}_2(g) \rightleftharpoons 2 \operatorname{MgO}(s)$
 - (B) $SF_4(g) + F_2(g) \rightleftharpoons SF_6(g)$
 - (C) $H_2(g) + Br_2(g) \rightleftharpoons 2 HBr(g)$
 - (D) $N_2(g) + 3 H_2(g) \rightleftharpoons 2 NH_3(g)$
 - (E) $SO_2Cl_2(g) \rightleftharpoons SO_2(g) + Cl_2(g)$
- 22. The standard enthalpy of formation, ΔH_f° , of $\mathrm{HI}(g)$ is +26 kJ mol^{-1} . Which of the following is the approximate mass of $\mathrm{HI}(g)$ that must decompose into $\mathrm{H}_2(g)$ and $\mathrm{I}_2(s)$ to release 500. kJ of energy?
 - (A) 250 g
 - (B) 650 g
 - (C) 1,300 g
 - (D) 2,500 g
 - (E) 13,000 g

$$\operatorname{CaCl}_2(s) \, \to \, \operatorname{Ca}^{2+}(aq) + 2 \operatorname{Cl}^-(aq)$$

- 23. For the process of solid calcium chloride dissolving in water, represented above, the entropy change might be expected to be positive. However, ΔS for the process is actually negative. Which of the following best helps to account for the net loss of entropy?
 - (A) Cl⁻ ions are much larger in size than Ca²⁺ ions.
 - (B) The particles in solid calcium chloride are more ordered than are particles in amorphous solids.
 - (C) Water molecules in the hydration shells of Ca²⁺ and Cl⁻ ions are more ordered than they are in the pure water.
 - (D) The $Ca^{2+}(aq)$ and $Cl^{-}(aq)$ ions are more free to move around in solution than they are in $CaCl_2(s)$.
 - (E) In the solution, the average distance between $Ca^{2+}(aq)$ and $Cl^{-}(aq)$ is greater than the average distance between Ca^{2+} and Cl^{-} in $CaCl_{2}(s)$.

...
$$CH_3OCH_3(g) + ... O_2(g) \rightarrow ... CO_2(g) + ... H_2O(g)$$

- 24. When the equation above is balanced using the lowest whole-number coefficients, the coefficient for $O_2(g)$ is
 - (A) 6
 - (B) 4
 - (C) 3
 - (D) 2
 - (E) 1

25. For which of the following processes does entropy decrease ($\Delta S < 0$) ?

(A)
$$H_2O(s) \rightarrow H_2O(l)$$

(B)
$$Br_2(l) \rightarrow Br_2(g)$$

- (C) Crystallization of $I_2(s)$ from an ethanol solution
- (D) Thermal expansion of a balloon filled with $CO_2(g)$
- (E) Mixing of equal volumes of $H_2O(l)$ and $CH_3OH(l)$
- 26. In a laboratory, a student wants to quantitatively collect the CO_2 gas generated by adding $Na_2CO_3(s)$ to 2.5 M HCl. The student sets up the apparatus to collect the CO_2 gas over water. The volume of collected gas is much less than the expected volume because CO_2 gas
 - (A) is very soluble in water
 - (B) is produced at a low pressure
 - (C) is more dense than water vapor
 - (D) has a larger molar mass than that of N_2 gas, the major component of air
 - (E) has a slower average molecular speed than water vapor at the same temperature
- 27. What mass of Cu(s) would be produced if 0.40 mol of $Cu_2O(s)$ was reduced completely with excess $H_2(g)$?
 - (A) 13 g
 - (B) 25 g
 - (C) 38 g
 - (D) 51 g (E) 100 g

28. Which of the following is a formula for an ether?

Gas	Amount
Ar	0.35 mol
CH ₄	0.90 mol
N ₂	0.25 mol

- 29. Three gases in the amounts shown in the table above are added to a previously evacuated rigid tank. If the total pressure in the tank is 3.0 atm at 25°C, the partial pressure of $N_2(g)$ in the tank is closest to
 - (A) 0.75 atm
 - (B) 0.50 atm
 - (C) 0.33 atm
 - (D) 0.25 atm
 - (E) 0.17 atm

- 30. Which of the following best explains why the normal boiling point of $CCl_4(l)$ (350 K) is higher than the normal boiling point of $CF_4(l)$ (145 K)?
 - (A) The C-Cl bonds in CCl₄ are less polar than the C-F bonds in CF₄.
 - (B) The C-Cl bonds in CCl₄ are weaker than the C-F bonds in CF₄.
 - (C) The mass of the CCl₄ molecule is greater than that of the CF₄ molecule.
 - (D) The electron cloud of the CCl₄ molecule is more polarizable than that of the CF₄ molecule.
 - (E) The bonds in the CCl₄ molecule are covalent, whereas the bonds in the CF₄ molecule are ionic.
- 31. At which of the following temperatures and pressures would a real gas be most likely to deviate from ideal behavior?

	Temperature (K)	Pressure (atm)
(A)	100	50
(B)	200	5
(C)	300	0.01
(D)	500	0.01
(E)	500	1

- 32. After 195 days, a 10.0 g sample of pure ⁹⁵ Zr has decayed to the extent that only 1.25 g of the original ⁹⁵ Zr remains. The half-life of ⁹⁵ Zr is closest to
 - (A) 195 days
 - (B) 97.5 days
 - (C) 65.0 days
 - (D) 48.8 days
 - (E) 24.4 days

- 33. Which of the following would produce the LEAST mass of CO₂ if completely burned in excess oxygen gas?
 - (A) 10.0 g CH₄
 - (B) 10.0 g CH₃OH
 - (C) $10.0 \text{ g C}_2\text{H}_4$
 - (D) $10.0 \text{ g C}_2\text{H}_6$
 - (E) $10.0 \text{ g C}_4\text{H}_5\text{OH}$
- 34. Which of the following substances exhibits significant hydrogen bonding in the liquid state?
 - (A) CH₂F₂
 - (B) N_2H_4
 - (C) CH₃OCH₃
 - (D) C₂H₄
 - (E) C_2H_2
- 35. In an aqueous solution with a pH of 11.50 at 25°C, the molar concentration of OH⁻(aq) is approximately
 - (A) $3.2 \times 10^{-12} M$
 - (B) $3.2 \times 10^{-3} M$
 - (C) $2.5 \times 10^{-1} M$
 - (D) 2.5 M
 - (E) $3.2 \times 10^{11} M$
- 36. Which of the following changes to a reaction system in equilibrium would affect the value of the equilibrium constant, K_{eq} , for the reaction? (Assume in each case that all other conditions are held constant.)
 - (A) Adding more of the reactants to the system
 - (B) Adding a catalyst for the reaction to the system
 - (C) Increasing the temperature of the system
 - (D) Increasing the pressure on the system
 - (E) Removing some of the reaction products from the system

Questions 37-38 refer to a galvanic cell constructed using two half-cells and based on the two half-reactions represented below.

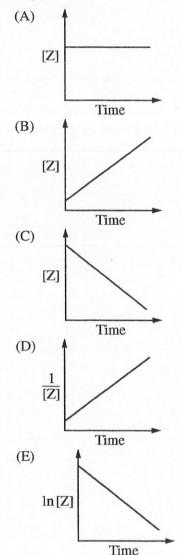
$$Zn^{2+}(aq) + 2e^{-} \rightarrow Zn(s)$$
 $E^{\circ} = -0.76 \text{ V}$
 $Fe^{3+}(aq) + e^{-} \rightarrow Fe^{2+}(aq)$ $E^{\circ} = 0.77 \text{ V}$

- 37. As the cell operates, ionic species that are found in the half-cell containing the cathode include which of the following?
 - I. $Zn^{2+}(aq)$
 - II. $Fe^{2+}(aq)$
 - III. $Fe^{3+}(aq)$
 - (A) I only
 - (B) II only
 - (C) III only
 - (D) I and III
 - (E) II and III
- 38. What is the standard cell potential for the galvanic cell?
 - (A) -0.01 V
 - (B) 0.01 V
 - (C) 0.78 V
 - (D) 1.53 V
 - (E) 2.31 V

Ionization Energies for Element X

	1st	2nd	3rd	4th	5th	6th	7th
Ionization Energy (kJ mol ⁻¹)	787	1,580	3,200	4,400	16,000	20,000	24,000

- 39. The first seven ionization energies of element X are shown in the table above. On the basis of these data, element X is most likely a member of which of the following groups (families) of elements?
 - (A) Alkaline earth metals
 - (B) Boron group
 - (C) Carbon group
 - (D) Nitrogen group
 - (E) Halogen group
- 40. Which of the following particles is emitted by an atom of ³⁹Ca when it decays to produce an atom of ³⁹K?
 - (A) ${}_{2}^{4}$ He
 - (B) ${}_{0}^{1}$ n
 - (C) ${}_{1}^{1}H$
 - (D) β⁻
 - (E) β⁺
- 41. At approximately what temperature will 40. g of argon gas at 2.0 atm occupy a volume of 22.4 L?
 - (A) 1,200 K
 - (B) 600 K
 - (C) 550 K
 - (D) 270 K
 - (E) 140 K
- 42. Which of the following aqueous solutions has the highest boiling point at 1.0 atm?
 - (A) 0.20 M CaCl₂
 - (B) $0.25 M \text{ Na}_2 \text{SO}_4$
 - (C) 0.30 M NaCl
 - (D) 0.30 M KBr
 - (E) $0.40 \, M \, C_6 H_{12} O_6$


- 43. A certain reaction is spontaneous at temperatures below 400. K but is not spontaneous at temperatures above 400. K. If ΔH° for the reaction is -20. kJ mol⁻¹ and it is assumed that ΔH° and ΔS° do not change appreciably with temperature, then the value of ΔS° for the reaction is
 - (A) -50. J mol⁻¹ K⁻¹
 - (B) $-20. \text{ J mol}^{-1} \text{ K}^{-1}$
 - (C) $-0.050 \text{ J mol}^{-1} \text{ K}^{-1}$
 - (D) 20. J mol⁻¹ K⁻¹
 - (E) 8,000 J mol⁻¹ K⁻¹
- 44. A sample of a solution of RbCl (molar mass 121 g mol⁻¹) contains 11.0 percent RbCl by mass. From the following information, what is needed to determine the molarity of RbCl in the solution?
 - I. Mass of the sample
 - II. Volume of the sample
 - III. Temperature of the sample
 - (A) I only
 - (B) II only
 - (C) I and II only
 - (D) II and III only
 - (E) I, II, and III

...
$$\operatorname{Au}^{3+}(aq) + ... \operatorname{I}^{-}(aq) \rightarrow ... \operatorname{Au}(s) + ... \operatorname{I}_{2}(s)$$

- 45. When the equation above is balanced using the lowest whole-number coefficients, the coefficient for $I_2(s)$ is
 - (A) 8
 - (B) 6
 - (C) 4
 - (D) 3
 - (E) 2
- 46. A closed rigid container contains distilled water and $N_2(g)$ at equilibrium. Actions that would increase the concentration of $N_2(g)$ in the water include which of the following?
 - I. Shaking the container vigorously
 - II. Raising the temperature of the water
 - III. Injecting more $N_2(g)$ into the container
 - (A) I only
 - (B) II only
 - (C) III only
 - (D) I and II only
 - (E) I, II, and III

$$Z \rightarrow X + Y$$

47. A pure substance Z decomposes into two products, X and Y, as shown by the equation above. Which of the following graphs of the concentration of Z versus time is consistent with the rate of the reaction being first order with respect to Z?

$$CS_2(l) + 3 O_2(g) \rightarrow CO_2(g) + 2 SO_2(g)$$

- 48. When 0.60 mol of $CS_2(l)$ reacts as completely as possible with 1.5 mol of $O_2(g)$ according to the equation above, the total number of moles of reaction products is
 - (A) 2.4 mol
 - (B) 2.1 mol
 - (C) 1.8 mol
 - (D) 1.5 mol
 - (E) 0.75 mol

Questions 49-50 refer to an experiment to determine the value of the heat of fusion of ice. A student used a calorimeter consisting of a polystyrene cup and a thermometer. The cup was weighed, then filled halfway with warm water, then weighed again. The temperature of the water was measured, and some ice cubes from a 0°C ice bath were added to the cup. The mixture was gently stirred as the ice melted, and the lowest temperature reached by the water in the cup was recorded. The cup and its contents were weighed again.

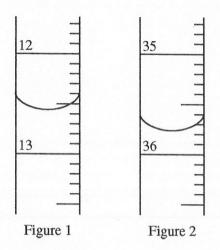
- 49. The purpose of weighing the cup and its contents again at the end of the experiment was to
 - (A) determine the mass of ice that was added
 - (B) determine the mass of the thermometer
 - (C) determine the mass of water that evaporated
 - (D) verify the mass of water that was cooled
 - (E) verify the mass of the calorimeter cup
- 50. Suppose that during the experiment, a significant amount of water from the ice bath adhered to the ice cubes. How does this affect the calculated value for the heat of fusion of ice?
 - (A) The calculated value is too large because less warm water had to be cooled.
 - (B) The calculated value is too large because more cold water had to be heated.
 - (C) The calculated value is too small because less ice was added than the student assumed.
 - (D) The calculated value is too small because the total mass of the calorimeter contents was too large.
 - (E) There is no effect on the calculated value because the water adhered to the ice cubes was at 0°C.

- 51. Which of the following molecules contains bonds that have a bond order of 1.5 ?
 - (A) N₂
 - $(B) O_3$
 - (C) NH₃
 - (D) CO₂
 - (E) CH₂CH₂
- 52. Of the following metals, which reacts violently with water at 298 K?
 - (A) Au
 - (B) Ag
 - (C) Cu
 - (D) Mg
 - (E) Rb
- 53. Heat energy is added slowly to a pure solid covalent compound at its melting point. About half of the solid melts to become a liquid. Which of the following <u>must</u> be true about this process?
 - (A) Covalent bonds are broken as the solid melts.
 - (B) The temperature of the solid/liquid mixture remains the same while heat is being added.
 - (C) The intermolecular forces present among molecules become zero as the solid melts.
 - (D) The volume of the compound increases as the solid melts to become a liquid.
 - (E) The average kinetic energy of the molecules becomes greater as the molecules leave the solid state and enter the liquid state.
- 54. A steady electric current is passed through molten MgCl₂ for exactly 1.00 hour, producing 243 g of Mg metal. If the same current is passed through molten AlCl₃ for 1.00 hour, the mass of Al metal produced is closest to
 - (A) 27.0 g
 - (B) 54.0 g
 - (C) 120. g
 - (D) 180. g
 - (E) 270. g

$$F^-(aq) + H_2O(l) \rightleftharpoons HF(aq) + OH^-(aq)$$

- 55. Which of the following species, if any, acts as a Brønsted-Lowry base in the reversible reaction represented above?
 - (A) HF(aq)
 - (B) $H_2O(l)$
 - (C) $F^-(aq)$ only
 - (D) Both F⁻(aq) and OH⁻(aq) act as Brønsted-Lowry bases.
 - (E) No species acts as a Brønsted-Lowry base.
- 56. What is the empirical formula of a hydrocarbon that is 10.0 percent hydrogen by mass?
 - (A) CH₃
 - (B) C_2H_5
 - (C) C₃H₄
 - (D) C_4H_0
 - (E) C_9H_{10}

$$Pb(s) \rightleftarrows Pb(l)$$


- 57. Which of the following is true for the process represented above at 327°C and 1 atm? (The normal melting point of Pb(s) is 327°C.)
 - (A) $\Delta H = 0$
 - (B) $T\Delta S = 0$
 - (C) $\Delta S < 0$
 - (D) $\Delta H = T\Delta G$
 - (E) $\Delta H = T\Delta S$

$$N_2(g) + O_2(g) + Cl_2(g) \rightleftharpoons 2 \text{ NOCl}(g)$$
 $\Delta H^{\circ} = +104 \text{ kJ mol}^{-1}$

$$\Delta H^{\circ} = +104 \text{ kJ mol}^{-1}$$

- 58. The equilibrium system represented above is contained in a sealed, rigid vessel. Which of the following will increase if the temperature of the mixture is raised?
 - (A) $[N_2(g)]$
 - (B) The rate of the forward reaction only
 - (C) The rate of the reverse reaction only
 - (D) The rates of both the forward and reverse reactions
 - (E) The total number of moles of gas in the vessel
- 59. If a metal X forms an ionic chloride with the formula XCl₃, then which of the following formulas is most likely to be that of a stable sulfide of X?
 - (A) XS₂
 - (B) X_2S_3
 - (C) XS₆
 - (D) $X(SO_3)_3$
 - (E) $X_2(SO_3)_3$

Questions 60-61 refer to the figures below. The figures show portions of a buret used in a titration of an acid solution of known concentration with a saturated solution of Ba(OH)₂. Figures 1 and 2 show the level of the Ba(OH)₂ solution at the start and at the endpoint of the titration, respectively. Phenolphthalein was used as the indicator for the titration.

- 60. What is the evidence that the endpoint of the titration has been reached?
 - (A) The color of the solution in the buret changes from pink to colorless.
 - (B) The color of the solution in the buret changes from blue to red.
 - (C) The color of the contents of the flask below the buret changes from colorless to pink.
 - (D) The color of the contents of the flask below the buret changes from blue to red.
 - (E) The contents of the flask below the buret change from clear to cloudy.
- 61. The volume of saturated Ba(OH)₂ used to neutralize the acid was closest to
 - (A) 6.60 mL
 - (B) 22.80 mL
 - (C) 23.02 mL
 - (D) 23.20 mL
 - (E) 29.80 mL

$C(diamond) \rightarrow C(graphite)$

- 62. For the reaction represented above, the standard Gibbs free energy change, ΔG_{298}° , has a value of $-2.90 \text{ kJ mol}^{-1}$. Which of the following best accounts for the observation that the reaction does NOT occur (i.e., diamond is stable) at 298 K and 1.00 atm?
 - (A) ΔS° for the reaction is positive.
 - (B) The activation energy, E_a , for the reaction is very large.
 - (C) The reaction is slightly exothermic ($\Delta H^{\circ} < 0$).
 - (D) Diamond has a density greater than that of graphite.
 - (E) Diamond has a heat capacity lower than that of graphite.

$8 H_2(g) + S_8(s) \rightarrow 8 H_2S(g)$

- 63. When 25.6 g of $S_8(s)$ (molar mass 256 g mol⁻¹) reacts completely with an excess of $H_2(g)$ according to the equation above, the volume of $H_2S(g)$, measured at 0°C and 1.00 atm, produced is closest to
 - (A) 30 L
 - (B) 20 L
 - (C) 10 L
 - (D) 5 L
 - (E) 2 L

$2 \text{ HClO} + 3 \text{ O}_2 \rightarrow 2 \text{ HClO}_4$

- 64. As the reaction represented above proceeds to the right, the oxidation number of chlorine changes from
 - (A) -1 to +3
 - (B) -1 to +5
 - (C) +1 to +5
 - (D) +1 to +7
 - (E) +3 to +7

- 65. By mixing only 0.15 *M* HCl and 0.25 *M* HCl, it is possible to create all of the following solutions EXCEPT
 - (A) 0.23 M HC1
 - (B) 0.21 M HCl
 - (C) 0.18 M HCl
 - (D) 0.16 M HCl
 - (E) 0.14 M HCl
- 66. At 25°C a saturated solution of a metal hydroxide, $M(OH)_2$, has a pH of 9.0. What is the value of the solubility-product constant, K_{sp} , of $M(OH)_2(s)$ at 25°C?
 - (A) 5.0×10^{-28}
 - (B) 1.0×10^{-27}
 - (C) 5.0×10^{-19}
 - (D) 5.0×10^{-16}
 - (E) 1.0×10^{-15}

- 67. A student weighs out 0.0154 mol of pure, dry NaCl in order to prepare a 0.154 *M* NaCl solution. Of the following pieces of laboratory equipment, which would be most essential for preparing the solution?
 - (A) Large crucible with lid
 - (B) 50 mL volumetric pipet
 - (C) 100 mL Erlenmeyer flask
 - (D) 100 mL graduated beaker
 - (E) 100 mL volumetric flask
- 68. In which of the following are the chemical species correctly ordered from smallest radius to largest radius?
 - (A) B < C < N
 - (B) Ar < Xe < Kr
 - (C) $C1 < S < S^{2-}$
 - (D) $Na < Na^{+} < K$
 - (E) $K^+ < Ca^{2+} < K$
- 69. A large piece of wood can burn slowly, but wood in the form of sawdust can combust explosively. The primary reason for the difference is that compared with a large piece of wood, sawdust
 - (A) has a greater surface area per kilogram
 - (B) has a greater carbon content per kilogram
 - (C) absorbs more atmospheric moisture per kilogram
 - (D) contains more compounds that act as catalysts for combustion
 - (E) contains more compounds that have higher heats of combustion
- 70. Of the following elements, which would be expected to have chemical properties most similar to those of sulfur, S?
 - (A) Br
 - (B) Cl
 - (C) N (D) P
 - (E) Se

- 71. When a solution is formed by adding some methanol, CH₃OH, to water, processes that are endothermic include which of the following?
 - I. Methanol molecules move water molecules apart as the methanol goes into solution.
 - II. Water molecules move methanol molecules apart as the methanol goes into solution.
 - III. Intermolecular attractions form between molecules of water and methanol as the methanol goes into solution.
 - (A) I only
 - (B) III only
 - (C) I and II only
 - (D) II and III only
 - (E) I, II, and III
- 72. Of the following gases, which has the greatest average molecular speed at 298 K?
 - (A) $Cl_2(g)$
 - (B) NO(g)
 - (C) $H_2S(g)$
 - (D) HCN(g)
 - (E) $PH_3(g)$
- 73. Types of hybridization exhibited by carbon atoms in a molecule of propyne, CH₃CCH, include which of the following?
 - I. sp
 - II. sp^2
 - III. sp^3
 - (A) I only
 - (B) III only
 - (C) I and III only(D) II and III only
 - (E) I, II, and III

$XY_2(aq) \rightleftharpoons X^{2+}(aq) + 2 Y^{-}(aq)$

- 74. A soluble compound XY_2 dissociates in water according to the equation above. In a 0.050 m solution of the compound, the $XY_2(aq)$ species is 40.0 percent dissociated. In the solution, the number of moles of particles of solute per 1.0 kg of water is closest to
 - (A) 0.15
 - (B) 0.090
 - (C) 0.070
 - (D) 0.040
 - (E) 0.020

- 75. In which of the following processes are covalent bonds broken?
 - (A) Solid silver melts.
 - (B) Solid potassium chloride melts.
 - (C) Solid carbon (graphite) sublimes.
 - (D) Solid iodine sublimes.
 - (E) Glucose dissolves in water.

END OF SECTION I

IF YOU FINISH BEFORE TIME IS CALLED, YOU MAY CHECK YOUR WORK ON THIS SECTION.

DO NOT GO ON TO SECTION II UNTIL YOU ARE TOLD TO DO SO.

Name: _____

AP® Chemistry Student Answer Sheet for Multiple-Choice Section

No.	Answer
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	

No.	Answer
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

No.	Answer
61	
62	
63	
64	
65	
66	
67	
68	
69	
70	
71	
72	
73	
74	
75	

AP® Chemistry Multiple-Choice Answer Key

No. Answer 1 D 2 B 3 A 4 E 5 A 6 C 7 D 8 B 9 C 10 A 11 E 12 D 13 B 14 C 15 C 16 E 17 C 18 E 19 D 20 B 21 E 22 D	
2 B 3 A 4 E 5 A 6 C 7 D 8 B 9 C 10 A 11 E 12 D 13 B 14 C 15 C 16 E 17 C 18 E 19 D 20 B 21 E	-
3 A 4 E 5 A 6 C 7 D 8 B 9 C 10 A 11 E 12 D 13 B 14 C 15 C 16 E 17 C 18 E 19 D 20 B 21 E	-
4 E 5 A 6 C 7 D 8 B 9 C 10 A 11 E 12 D 13 B 14 C 15 C 16 E 17 C 18 E 19 D 20 B 21 E	
5 A 6 C 7 D 8 B 9 C 10 A 11 E 12 D 13 B 14 C 15 C 16 E 17 C 18 E 19 D 20 B 21 E	
6 C 7 D 8 B 9 C 10 A 11 E 12 D 13 B 14 C 15 C 16 E 17 C 18 E 19 D 20 B 21 E	_
7 D 8 B 9 C 10 A 11 E 12 D 13 B 14 C 15 C 16 E 17 C 18 E 19 D 20 B 21 E	
8 B 9 C 10 A 11 E 12 D 13 B 14 C 15 C 16 E 17 C 18 E 19 D 20 B 21 E	
9 C 10 A 11 E 12 D 13 B 14 C 15 C 16 E 17 C 18 E 19 D 20 B 21 E	
10 A 11 E 12 D 13 B 14 C 15 C 16 E 17 C 18 E 19 D 20 B 21 E	
11 E 12 D 13 B 14 C 15 C 16 E 17 C 18 E 19 D 20 B 21 E	
12 D 13 B 14 C 15 C 16 E 17 C 18 E 19 D 20 B 21 E	
13 B 14 C 15 C 16 E 17 C 18 E 19 D 20 B 21 E	
14 C 15 C 16 E 17 C 18 E 19 D 20 B 21 E	
15 C 16 E 17 C 18 E 19 D 20 B 21 E	
16 E 17 C 18 E 19 D 20 B 21 E	
17 C 18 E 19 D 20 B 21 E	
18 E 19 D 20 B 21 E	
19 D 20 B 21 E	
20 B 21 E	
21 E	
23 C	
24 C	
25 C	
26 A	
27 D	
28 E	
29 B	_
30 D	

	Correct
No.	Answer
31	A
32	С
33	В
34	В
35	В
36	C
37	Е
38	D
39	C
40	Е
41	C
42	В
43	A
44	С
45	D
46	С
47	Е
48	D
49	A
50	С
51	В
52	Е
53	В
54	D
55	D
56	С
57	Е
58	D
59	В
60	С

Correct
Answer
D
В
В
D
Е
D
Е
С
A
Е
С
D
С
В
С